Lecture Notes

Gate Turn-off Thyristors (GTOs)

OUTLINE

- GTO construction and I-V characteristics.
- Physical operation of GTOs.
- Switching behavior of GTOs

GTO (Gate Turn-off Thyristor) Construction

- Unique features of the GTO.
 - Highly interdigitated gate-cathode structure (faster switching)
 - Etched cathode islands (simplify electrical contacts)
 - Anode shorts (speed up turn-off)
 - GTO has no reverse blocking capability because of anode shorts
- Otherwise i-v characteristic the same as for standard SCR
GTO Turn-off Gain

- Turn off GTO by pulling one or both of the BJTs out of saturation and into active region.
- Force Q2 active by using negative base current I_G to make $I_B^2 < \frac{I_C^2}{\beta^2}$.

 \[
 I_B^2 = \alpha_1 I_A - I_G^* \quad ; \quad I_C^2 = (1 - \alpha_1) I_A
 \]
- $\alpha_1 I_A - I_G^* < \frac{(1 - \alpha_1) I_A}{\beta^2} = \frac{(1 - \alpha_1)(1 - \alpha_2) I_A}{\alpha_2}$
- $I_G^* < \frac{I_A}{\beta_{\text{off}}}$; $\beta_{\text{off}} = \frac{\alpha_2}{(1 - \alpha_1 - \alpha_2)} = \text{turn-off gain}$

- Large turn-off gain requires $\alpha_2 \approx 1$, $\alpha_1 << 1$
- Make α_1 small by
 1. Wide n_1 region (base of Q1) - also needed for large blocking voltage
 2. Short lifetime in n_1 region to remove excess carriers rapidly so Q1 can turn off
- Short lifetime causes higher on-state losses
- Anode shorts helps resolve lifetime dilemma
 1. Reduce lifetime only moderately to keep on-state losses reasonable
 2. N+ anode regions provide a sink for excess holes - reduces turn-off time
- Make $\alpha_2 = \text{unity}$ by making p2 layer relatively thin and doping in n2 region heavily (same basic steps used in making beta large in BJTs).
- Use highly interdigitated gate-cathode geometry to minimize cathode current crowding and di/dt limitations.

Maximum Controllable Anode Current

- Large negative gate current creates lateral voltage drops which must be kept smaller than breakdown voltage of J3.
- If J3 breaks down, it will happen at gate-cathode periphery and all gate current will flow there and not sweep out any excess carriers as required to turn-off GTO.
- Thus keep gate current less than $I_{G,\text{max}}$ and so anode current restricted by $I_A < \frac{I_{G,\text{max}}}{\beta_{\text{off}}}$.
GTO used in medium-to-high power applications where electrical stresses are large and where other solid state devices used with GTOs are slow e.g. free-wheeling diode D_F.

- GTO almost always used with turn-on and turn-off snubbers.
 1. Turn-on snubber to limit overcurrent from D_F reverse recovery.
 2. Turn-off snubber to limit rate-of-rise of voltage to avoid retriggering the GTO into the on-state.

- Hence should describe transient behavior of GTO in circuit with snubbers.

GTO Turn-on Waveforms

- GTO turn on essentially the same as for a standard thyristor
- Large I_{GM} and large rate-of-rise insure all cathode islands turn on together and have good current sharing.
- Backporch current I_{GT} needed to insure all cathode islands stay in conduction during entire on-time interval.
- Anode current overshoot caused by free-wheeling diode reverse recovery current.
- Anode-cathode voltage drops precipitously because of turn-on snubber.
GTO Turn-off Waveforms

- **\(t_i \) interval**
 - Time required to remove sufficient stored charge to bring BJTs into active region and break latch condition

- **\(t_f \) interval**
 1. Anode current falls rapidly as load current commutates to turn-off snubber capacitor
 2. Rapid rise in anode-cathode voltage due to stray inductance in turn-off snubber circuit

- **\(t_{w2} \) interval**
 1. Junction \(J_3 \) goes into avalanche breakdown because of inductance in trigger circuit. Permits negative gate current to continuing flowing and sweeping out charge from \(p_2 \) layer.
 2. Reduction in gate current with time means rate of anode current commutation to snubber capacitor slows. Start of anode current tail.

- **\(t_{tail} \) interval**
 1. Junction \(J_3 \) blocking, so anode current = negative gate current. Long tailing time required to remove remaining stored charge.
 2. Anode-cathode voltage growth governed by turn-off snubber.
 3. Most power dissipation occurs during tailing time.
Insulated Gate Bipolar Transistors (IGBTs)

Outline

• Construction and I-V characteristics
• Physical operation
• Switching characteristics
• Limitations and safe operating area
• PSPICE simulation models

Multi-cell Structure of IGBT

• IGBT = insulated gate bipolar transistor.
• Cell structure similar to power MOSFET (VDMOS) cell.
• P-region at collector end unique feature of IGBT compared to MOSFET.
• Punch-through (PT) IGBT - N+ buffer layer present.
• Non-punch-through (NPT) IGBT - N+ buffer layer absent.
IGBT I-V Characteristics and Circuit Symbols

- No Buffer Layer
 \[V_{RM} = V_{CES} \]
- With Buffer Layer
 \[V_{RM} = 0 \]

Transfer curve

- **N-channel IGBT circuit symbols**

Blocking (Off) State Operation of IGBT

- Blocking state operation - \(V_{GE} < V_{GE(th)} \)
- Junction \(J_2 \) is blocking junction - \(n^+ \) drift region holds depletion layer of blocking junction.
- Without \(N^+ \) buffer layer, IGBT has large reverse blocking capability - so-called symmetric IGBT
- With \(N^+ \) buffer layer, junction \(J_1 \) has small breakdown voltage and thus IGBT has little reverse blocking capability - anti-symmetric IGBT
- Buffer layer speeds up device turn-off
IGBT On-state Operation

- MOSFET section designed to carry most of the IGBT collector current

- On-state $V_{CE(on)} = V_{J1} + V_{drift} + I_C R_{channel}$

- Hole injection into drift region from J_1 minimizes V_{drift}.

Approximate Equivalent Circuits for IGBTs

- Approximate equivalent circuit for IGBT valid for normal operating conditions.

- $V_{CE(on)} = V_{J1} + V_{drift} + I_C R_{channel}$

- IGBT equivalent circuit showing transistors comprising the parasitic thyristor.
Static Latchup of IGBTs

- Lateral voltage drops, if too large, will forward bias junction J3.
- Parasitic npn BJT will be turned on, thus completing turn-on of parasitic thyristor.
- Large power dissipation in latchup will destroy IGBT unless terminated quickly. External circuit must terminate latchup - no gate control in latchup.

Dynamic Latchup Mechanism in IGBTs

- MOSFET section turns off rapidly and depletion layer of junction J2 expands rapidly into N- layer, the base region of the pnp BJT.
- Expansion of depletion layer reduces base width of pnp BJT and its a increases.
- More injected holes survive traversal of drift region and become “collected” at junction J2.
- Increased pnp BJT collector current increases lateral voltage drop in p-base of npn BJT and latchup soon occurs.
- Manufacturers usually specify maximum allowable drain current on basis of dynamic latchup.
Internal Capacitances Vs Spec Sheet Capacitances

\[C_{\text{ies}} = C_{\text{ge}} + C_{\text{gc}} \]

Bridge balanced \((V_b=0)\) \(C_{\text{bridge}} = C_{gc} = C_{\text{res}}\)

\[C_{\text{oes}} = C_{gc} + C_{ce} \]

IGBT Turn-on Waveforms

- Turn-on waveforms for IGBT embedded in a stepdown converter.
- Very similar to turn-on waveforms of MOSFETs.
- Contributions to \(t_{vf2}\).
- Increase in \(C_{ge}\) of MOSFET section at low collector-emitter voltages.
- Slower turn-on of pnp BJT section.
IGBT Turn-off Waveforms

- Turn-off waveforms for IGBT embedded in a stepdown converter.
- Current “tailing” (t_{fi2}) due to stored charge trapped in drift region (base of pnp BJT) by rapid turn-off of MOSFET section.
- Shorten tailing interval by either reducing carrier lifetime or by putting N+ buffer layer adjacent to injecting P+ layer at drain.
- Buffer layer acts as a sink for excess holes otherwise trapped in drift region because lifetime in buffer layer can be made small without effecting on-state losses - buffer layer thin compared to drift region.

<table>
<thead>
<tr>
<th>$v_{GE}(t)$</th>
<th>$i_C(t)$</th>
<th>$v_{CE}(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GE(th)}$</td>
<td>$t_{d(off)}$</td>
<td>V_D</td>
</tr>
<tr>
<td>V_{GG-}</td>
<td>t_{fi2}</td>
<td></td>
</tr>
<tr>
<td>t_{rV}</td>
<td>t_{f11}</td>
<td></td>
</tr>
<tr>
<td>$t_{d(off)}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IGBT Safe Operating Area

- Maximum collector-emitter voltages set by breakdown voltage of pnp transistor - 2500 v devices available.
- Maximum collector current set by latchup considerations - 100 A devices can conduct 1000 A for 10 μsec and still turn-off via gate control.
- Maximum junction temp. = 150 C.
- Manufacturer specifies a maximum rate of increase of re-applied collector-emitter voltage in order to avoid latchup.
Development of PSpice IGBT Model

- Nonlinear capacitors C_{dsj} and C_{cer} due to N-P junction depletion layer.
- Nonlinear capacitor $C_{ebj} + C_{ebd}$ due to P-N+ junction.
- MOSFET and PNP BJT are intrinsic (no parasitics) devices.
- Nonlinear resistor R_b due to conductivity modulation of N- drain drift region of MOSFET portion.
- Nonlinear capacitor C_{gdj} due to depletion region of drain-body junction (N-P junction).
- Circuit model assumes that latchup does not occur and parasitic thyristor does not turn.

Parameter Estimation for PSpice IGBT Model

- Built-in IGBT model requires nine parameter values.
- Parameters described in Help files of Parts utility program.
- Parts utility program guides users through parameter estimation process.
- IGBT specification sheets provided by manufacturer provide sufficient information for general purpose simulations.
- Detailed accurate simulations, for example device dissipation studies, may require the user to carefully characterize the selected IGBTs.

- Built-in model does not model ultrafast IGBTs with buffer layers (punch-through IGBTs) or reverse free-wheeling diodes.
PSpice IGBT - Simulation Vs Experiment

Data from IXGH40N60 spec sheet
Simulated C_{GC} versus V_{CE} for IXGH40N60
$V_{GE} = 0$ V

Copyright © by John Wiley & Sons 2003